

V_{RSM} V	V_{RRM}, V_{DRM} V	$I_D = 83 A$ (full conduction) ($T_s = 95^\circ C$)
500	400	SKD 83/04
900	800	SKD 83/08
1300	1200	SKD 83/12
1600	1400	SKD 83/14
1700	1600	SKD 83/16
1900	1800	SKD 83/18

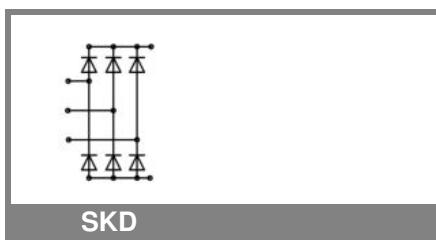
Power Bridge Rectifiers

SKD 83

Features

- Glass passivated silicon chips
- Low thermal impedance through use of direct copper bonded aluminum substrate (DCB) base plate
- Blocking voltage up to 1800 V
- Suitable for PCB mounting and wave soldering
- For applications with high vibrations we recommend to fasten the bridge to the pcb with 4 selftapping screw

Typical Applications


- Three phase rectifiers for power supplies
- Input rectifiers for variable frequency drives
- Rectifiers for DC motor field supplies
- Battery charger rectifiers

1) Freely suspended or mounted on an insulator

2) Mounted on a painted metal sheet of min. 250 x 250 x 1 mm

3) $T_{solder} = 250 \pm 10^\circ C$ (10 s)

Symbol	Conditions	Values	Units
I_D	$T_s = 95^\circ C$	83	A
	$T_a = 45^\circ C$; isolated ¹⁾	4	A
	$T_a = 45^\circ C$; chassis ²⁾	20	A
	$T_a = 45^\circ C$; P5A/100 (R4A/120)	32 (34)	A
	$T_a = 35^\circ C$; P1A/120F	83	A
I_{FSM}	$T_{vj} = 25^\circ C$; 10 ms	700	A
	$T_{vj} = 150^\circ C$; 10 ms	560	A
i^2t	$T_{vj} = 25^\circ C$; 8,3 ... 10 ms	2450	A ² s
	$T_{vj} = 150^\circ C$; 8,3 ... 10 ms	1570	A ² s
V_F $V_{(TO)}$	$T_{vj} = 25^\circ C$; $I_F = 80 A$	max. 1,45	V
	$T_{vj} = 150^\circ C$	max. 0,8	V
r_T	$T_{vj} = 150^\circ C$	max. 7,5	mΩ
I_{RD}	$T_{vj} = 25^\circ C$; $V_{DD} = V_{DRM}$; $V_{RD} = V_{RRM}$	max. 0,2	mA
	$T_{vj} = 150^\circ C$; $V_{RD} = V_{RRM}$	4	mA
$R_{th(j-s)}$	per diode	1,4	K/W
	total	0,233	K/W
$R_{th(j-a)}$	isolated ¹⁾	14,83	K/W
	chassis ²⁾	2,83	K/W
T_{vj}		- 40 ... + 150	°C
T_{stg}		- 40 ... + 125 ³⁾	°C
V_{isol}	a. c. 50 Hz; r.m.s.; 1 s / 1 min.	3600 (3000)	V
M_s	to heatsink; SI units	2 ± 15 %	Nm
M_t		5 * 9,81	m/s ²
a		30	g
m			
Case		G 55	

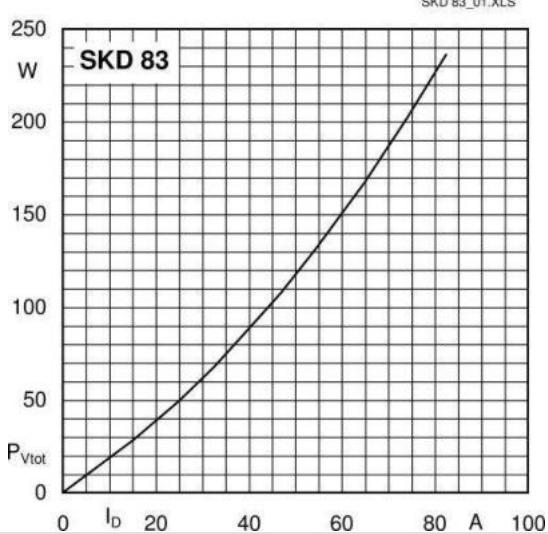


Fig. 3L Power dissipation vs. output current

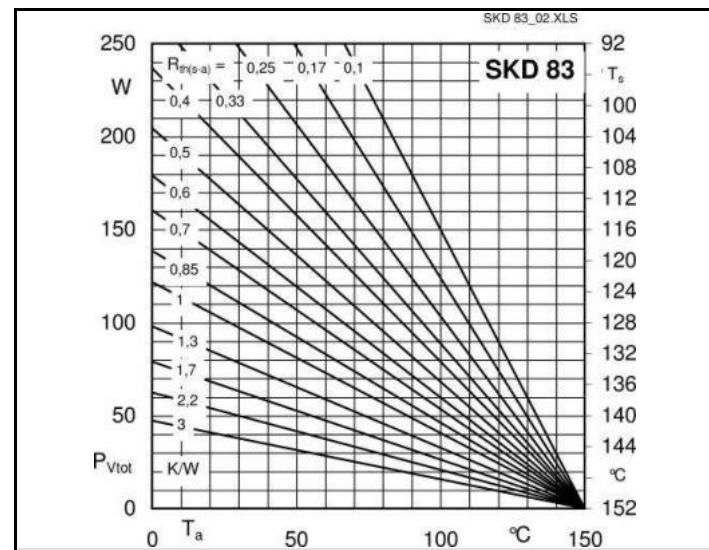
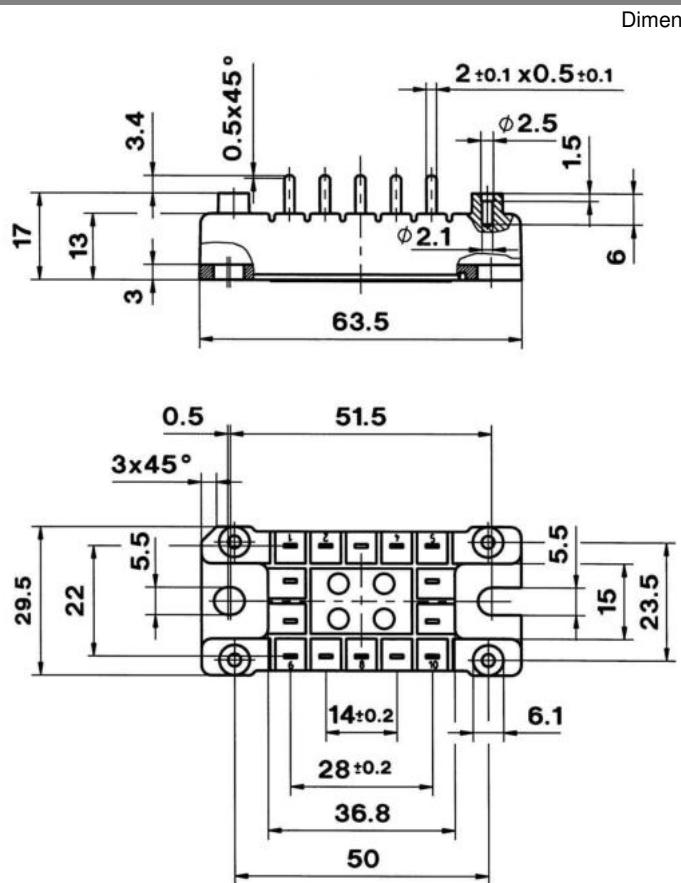
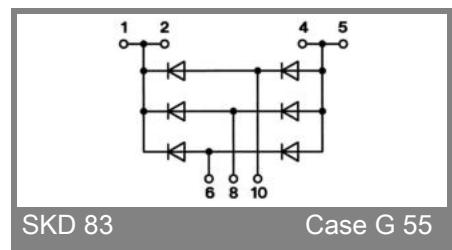




Fig. 3R Power dissipation vs. heatsink temperature

Case G 55

This technical information specifies semiconductor devices but promises no characteristics. No warranty or guarantee expressed or implied is made regarding delivery, performance or suitability.